生物视觉系统的神经基础在实验上研究很具有挑战性,特别是因为相对于视觉输入,神经元活性变得越来越非线性。人工神经网络(ANN)可以为改善我们对这一复杂系统的理解提供各种目标,不仅充当硅中新假设产生的感觉皮层的预测数字双胞胎,而且还融合了生物启发的建筑主题,以逐步桥接桥梁生物和机器视觉之间的差距。该鼠标最近已成为研究视觉信息处理的流行模型系统,但是尚未确定识别鼠标视觉系统最新模型的标准化大规模基准。为了填补这一空白,我们提出了感官基准竞赛。我们从小鼠初级视觉皮层中收集了一个大规模数据集,其中包含七个小鼠的28,000多个神经元的反应,并通过数千个自然图像刺激,以及同时的行为测量,包括跑步速度,瞳孔扩张和眼动。基准挑战将基于固定测试集​​中神经元响应的预测性能对模型进行对模型,其中包括两个模型输入的轨道,仅限于刺激(感觉到)或刺激加行为(感觉符号+)。我们提供一个起始套件,以降低进入障碍的障碍,包括教程,预训练的基线模型以及带有一条线命令以进行数据加载和提交的API。我们希望将其视为定期挑战和数据发布的起点,也是衡量鼠标视觉系统及其他大规模神经系统识别模型中进度的标准工具。
translated by 谷歌翻译
We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural rendering. Motivated by the fact that informative point cloud features should be able to encode rich geometry and appearance cues and render realistic images, we train a point-cloud encoder within a devised point-based neural renderer by comparing the rendered images with real images on massive RGB-D data. The learned point-cloud encoder can be easily integrated into various downstream tasks, including not only high-level tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image synthesis. Extensive experiments on various tasks demonstrate the superiority of our approach compared to existing pre-training methods.
translated by 谷歌翻译
准确地估算主要山区盆地中的积雪对于水资源经理来说至关重要,以便做出影响当地和全球经济,野生动植物和公共政策的决策。目前,此估计需要多个配备LIDAR的飞机飞行或原位测量值,两者均昂贵,稀疏和对可访问区域有偏见。在本文中,我们证明了来自多个,公开可用的卫星和天气数据源的空间和时间信息的融合,可以估算关键山区的积雪。我们的多源模型的表现优于单源估计值5.0英寸RMSE,并且优于稀疏的原位测量值的估计值1.2英寸RMSE。
translated by 谷歌翻译
我们从一组稀疏的光谱时间序列中构建了一个物理参数化的概率自动编码器(PAE),以学习IA型超新星(SNE IA)的内在多样性。 PAE是一个两阶段的生成模型,由自动编码器(AE)组成,该模型在使用归一化流(NF)训练后概率地解释。我们证明,PAE学习了一个低维的潜在空间,该空间可捕获人口内存在的非线性特征范围,并且可以直接从数据直接从数据中准确地对整个波长和观察时间进行精确模拟SNE IA的光谱演化。通过引入相关性惩罚项和多阶段训练设置以及我们的物理参数化网络,我们表明可以在训练期间分离内在和外在的可变性模式,从而消除了需要进行额外标准化的其他模型。然后,我们在SNE IA的许多下游任务中使用PAE进行越来越精确的宇宙学分析,包括自动检测SN Outliers,与数据分布一致的样本的产生以及在存在噪音和不完整数据的情况下解决逆问题限制宇宙距离测量。我们发现,与以前的研究相一致的最佳固有模型参数数量似乎是三个,并表明我们可以用$ 0.091 \ pm 0.010 $ mag标准化SNE IA的测试样本,该样本对应于$ 0.074 \ pm。 0.010 $ mag如果删除了特殊的速度贡献。训练有素的模型和代码在\ href {https://github.com/georgestein/supaernova} {github.com/georgestein/supaernova}上发布
translated by 谷歌翻译
当前,可以将预训练的模型视为多种NLP任务的默认选择。尽管有SOTA结果,但有实际证据表明,这些模型可能需要不同数量的计算层来进行不同的输入序列,因为评估所有层都会导致错误的预测过度自信(即过度思考)。可以通过实施自适应计算时间方法来解决此问题,该方法首先旨在提高推理速度。最近提出的洪加尔网可能是通过将出口层的索引视为潜在变量来进行早期出口的有前途解决方案。但是,最初提出的退出标准依赖于从经过训练的后验分布中取样的概率,从$ i $ the层退出,引入了出口层指数的主要差异,从而大大降低了所得模型的性能。在本文中,我们提出了通过新颖的确定性Q-Exit标准和重新审视的模型体系结构提出改进的Pondernet。我们将提出的机制调整为阿尔伯特和罗伯塔,并将其与最近进行早期出口的方法进行了比较。我们观察到,在广泛的胶水任务上,可以将提出的更改视为对原始蓬松网络架构的重大改进,并胜过pabee。此外,我们还对拟议的体系结构进行了深入的消融研究,以进一步了解Lambda层及其性能。
translated by 谷歌翻译